Problem: active(incr(nil())) -> mark(nil()) active(incr(cons(X,L))) -> mark(cons(s(X),incr(L))) active(adx(nil())) -> mark(nil()) active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L)))) active(nats()) -> mark(adx(zeros())) active(zeros()) -> mark(cons(0(),zeros())) active(head(cons(X,L))) -> mark(X) active(tail(cons(X,L))) -> mark(L) active(incr(X)) -> incr(active(X)) active(cons(X1,X2)) -> cons(active(X1),X2) active(s(X)) -> s(active(X)) active(adx(X)) -> adx(active(X)) active(head(X)) -> head(active(X)) active(tail(X)) -> tail(active(X)) incr(mark(X)) -> mark(incr(X)) cons(mark(X1),X2) -> mark(cons(X1,X2)) s(mark(X)) -> mark(s(X)) adx(mark(X)) -> mark(adx(X)) head(mark(X)) -> mark(head(X)) tail(mark(X)) -> mark(tail(X)) proper(incr(X)) -> incr(proper(X)) proper(nil()) -> ok(nil()) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(s(X)) -> s(proper(X)) proper(adx(X)) -> adx(proper(X)) proper(nats()) -> ok(nats()) proper(zeros()) -> ok(zeros()) proper(0()) -> ok(0()) proper(head(X)) -> head(proper(X)) proper(tail(X)) -> tail(proper(X)) incr(ok(X)) -> ok(incr(X)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) s(ok(X)) -> ok(s(X)) adx(ok(X)) -> ok(adx(X)) head(ok(X)) -> ok(head(X)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Proof: Bounds Processor: bound: 10 enrichment: match automaton: final states: {15,14,13,12,11,10,9,8,7} transitions: zeros3() -> 58* ok4(67) -> 51* ok4(79) -> 87* ok4(78) -> 86* adx4(69) -> 77* adx4(64) -> 51* adx4(58) -> 67* cons4(87,86) -> 74* cons4(79,78) -> 80* cons4(61,58) -> 67* cons4(63,42) -> 51* active4(67) -> 70* active4(42) -> 64* active4(44) -> 63* top4(70) -> 15* mark3(69) -> 64* mark4(80) -> 74* mark4(77) -> 51* adx5(80) -> 84* adx5(74) -> 70* active5(105) -> 91* active5(61) -> 73* active5(58) -> 74* cons5(97,96) -> 92* cons5(79,78) -> 98* cons5(73,58) -> 70* proper4(77) -> 70* proper4(61) -> 87* proper4(58) -> 86* 04() -> 79* zeros4() -> 78* proper5(84) -> 91* proper5(79) -> 97* proper5(69) -> 74* proper5(78) -> 96* mark5(84) -> 70* active0(5) -> 7* active0(2) -> 7* active0(4) -> 7* active0(6) -> 7* active0(1) -> 7* active0(3) -> 7* top5(91) -> 15* incr0(5) -> 8* incr0(2) -> 8* incr0(4) -> 8* incr0(6) -> 8* incr0(1) -> 8* incr0(3) -> 8* adx6(92) -> 91* adx6(101) -> 151* adx6(98) -> 105* adx6(78) -> 108* nil0() -> 1* proper6(110) -> 118* proper6(80) -> 92* mark0(5) -> 2* mark0(2) -> 2* mark0(4) -> 2* mark0(6) -> 2* mark0(1) -> 2* mark0(3) -> 2* ok5(102) -> 133,97 ok5(101) -> 141,96 ok5(98) -> 74* cons0(3,1) -> 9* cons0(3,3) -> 9* cons0(3,5) -> 9* cons0(4,2) -> 9* cons0(4,4) -> 9* cons0(4,6) -> 9* cons0(5,1) -> 9* cons0(5,3) -> 9* cons0(5,5) -> 9* cons0(6,2) -> 9* cons0(1,2) -> 9* cons0(6,4) -> 9* cons0(1,4) -> 9* cons0(6,6) -> 9* cons0(1,6) -> 9* cons0(2,1) -> 9* cons0(2,3) -> 9* cons0(2,5) -> 9* cons0(3,2) -> 9* cons0(3,4) -> 9* cons0(3,6) -> 9* cons0(4,1) -> 9* cons0(4,3) -> 9* cons0(4,5) -> 9* cons0(5,2) -> 9* cons0(5,4) -> 9* cons0(5,6) -> 9* cons0(6,1) -> 9* cons0(1,1) -> 9* cons0(6,3) -> 9* cons0(1,3) -> 9* cons0(6,5) -> 9* cons0(1,5) -> 9* cons0(2,2) -> 9* cons0(2,4) -> 9* cons0(2,6) -> 9* ok6(105) -> 70* ok6(152) -> 194,147 ok6(151) -> 132* ok6(106) -> 92* ok6(148) -> 145* ok6(155) -> 128* s0(5) -> 10* s0(2) -> 10* s0(4) -> 10* s0(6) -> 10* s0(1) -> 10* s0(3) -> 10* 05() -> 102* adx0(5) -> 11* adx0(2) -> 11* adx0(4) -> 11* adx0(6) -> 11* adx0(1) -> 11* adx0(3) -> 11* zeros5() -> 101* nats0() -> 3* cons6(117,78) -> 92* cons6(102,151) -> 155* cons6(79,108) -> 109* cons6(102,101) -> 106* zeros0() -> 4* ok7(197) -> 181* ok7(204) -> 201* ok7(159) -> 186,144 ok7(114) -> 91* ok7(206) -> 203* ok7(156) -> 118* ok7(160) -> 138* 00() -> 5* adx7(152) -> 159* adx7(127) -> 118* adx7(194) -> 186* adx7(141) -> 132* adx7(106) -> 114* adx7(101) -> 120* head0(5) -> 12* head0(2) -> 12* head0(4) -> 12* head0(6) -> 12* head0(1) -> 12* head0(3) -> 12* active6(114) -> 118* active6(79) -> 117* active6(98) -> 92* tail0(5) -> 13* tail0(2) -> 13* tail0(4) -> 13* tail0(6) -> 13* tail0(1) -> 13* tail0(3) -> 13* mark6(110) -> 91* proper0(5) -> 14* proper0(2) -> 14* proper0(4) -> 14* proper0(6) -> 14* proper0(1) -> 14* proper0(3) -> 14* incr6(109) -> 110* ok0(5) -> 6* ok0(2) -> 6* ok0(4) -> 6* ok0(6) -> 6* ok0(1) -> 6* ok0(3) -> 6* top6(118) -> 15* top0(5) -> 15* top0(2) -> 15* top0(4) -> 15* top0(6) -> 15* top0(1) -> 15* top0(3) -> 15* incr7(155) -> 156* incr7(151) -> 162* incr7(121) -> 122* incr7(128) -> 118* top1(37) -> 15* proper7(122) -> 137* proper7(109) -> 128* proper7(79) -> 133* proper7(101) -> 194* proper7(108) -> 132* proper7(78) -> 141* active1(5) -> 37* active1(2) -> 37* active1(4) -> 37* active1(6) -> 37* active1(1) -> 37* active1(3) -> 37* active7(102) -> 131* active7(156) -> 137* active7(106) -> 127* proper1(5) -> 37* proper1(2) -> 37* proper1(4) -> 37* proper1(6) -> 37* proper1(1) -> 37* proper1(3) -> 37* mark7(122) -> 118* mark7(164) -> 137* ok1(35) -> 37,14 ok1(25) -> 25,9 ok1(20) -> 37,14 ok1(27) -> 27,10 ok1(29) -> 29,11 ok1(31) -> 31,12 ok1(33) -> 33,13 ok1(23) -> 23,8 ok1(18) -> 37,14 cons7(131,101) -> 127* cons7(133,132) -> 128* cons7(163,162) -> 164* cons7(102,120) -> 121* cons7(131,151) -> 138* cons7(148,159) -> 160* tail1(5) -> 33* tail1(2) -> 33* tail1(4) -> 33* tail1(6) -> 33* tail1(1) -> 33* tail1(3) -> 33* top7(137) -> 15* head1(5) -> 31* head1(2) -> 31* head1(4) -> 31* head1(6) -> 31* head1(1) -> 31* head1(3) -> 31* incr8(160) -> 168* incr8(159) -> 172* incr8(186) -> 180* incr8(138) -> 137* adx1(5) -> 29* adx1(2) -> 29* adx1(4) -> 29* adx1(6) -> 29* adx1(1) -> 29* adx1(18) -> 19* adx1(3) -> 29* proper8(120) -> 144* proper8(162) -> 180* proper8(152) -> 203* proper8(102) -> 145* proper8(164) -> 170* proper8(151) -> 186* proper8(121) -> 138* proper8(101) -> 147* proper8(163) -> 181* s1(5) -> 27* s1(2) -> 27* s1(4) -> 27* s1(6) -> 27* s1(1) -> 27* s1(3) -> 27* cons8(185,159) -> 179* cons8(181,180) -> 170* cons8(173,172) -> 174* cons8(145,144) -> 138* cons8(197,172) -> 211* cons1(2,6) -> 25* cons1(3,1) -> 25* cons1(3,3) -> 25* cons1(3,5) -> 25* cons1(4,2) -> 25* cons1(4,4) -> 25* cons1(4,6) -> 25* cons1(5,1) -> 25* cons1(5,3) -> 25* cons1(5,5) -> 25* cons1(6,2) -> 25* cons1(1,2) -> 25* cons1(6,4) -> 25* cons1(1,4) -> 25* cons1(6,6) -> 25* cons1(1,6) -> 25* cons1(2,1) -> 25* cons1(2,3) -> 25* cons1(2,5) -> 25* cons1(3,2) -> 25* cons1(3,4) -> 25* cons1(3,6) -> 25* cons1(4,1) -> 25* cons1(4,3) -> 25* cons1(4,5) -> 25* cons1(5,2) -> 25* cons1(5,4) -> 25* cons1(5,6) -> 25* cons1(20,18) -> 19* cons1(6,1) -> 25* cons1(1,1) -> 25* cons1(6,3) -> 25* cons1(1,3) -> 25* cons1(6,5) -> 25* cons1(1,5) -> 25* cons1(2,2) -> 25* cons1(2,4) -> 25* 06() -> 148* incr1(5) -> 23* incr1(2) -> 23* incr1(4) -> 23* incr1(6) -> 23* incr1(1) -> 23* incr1(3) -> 23* adx8(147) -> 144* adx8(206) -> 212* adx8(203) -> 198* 01() -> 20* zeros6() -> 152* zeros1() -> 18* ok8(212) -> 198* ok8(172) -> 180* ok8(211) -> 170* ok8(208) -> 193* ok8(168) -> 137* nats1() -> 35* active8(155) -> 138* active8(168) -> 170* active8(148) -> 185* nil1() -> 35* s7(102) -> 163* s7(148) -> 197* mark1(25) -> 25,9 mark1(27) -> 27,10 mark1(29) -> 29,11 mark1(19) -> 37,7 mark1(31) -> 31,12 mark1(33) -> 33,13 mark1(23) -> 23,8 top8(170) -> 15* top2(39) -> 15* incr9(212) -> 215* incr9(179) -> 170* incr9(198) -> 192* active2(35) -> 39* active2(20) -> 39* active2(18) -> 39* active9(160) -> 179* active9(197) -> 217* active9(204) -> 224* active9(211) -> 188* proper2(20) -> 49* proper2(19) -> 39* proper2(18) -> 48* mark8(174) -> 170* adx2(42) -> 43* adx2(48) -> 39* s8(145) -> 181* s8(204) -> 208* s8(148) -> 173* s8(185) -> 217* cons2(44,42) -> 43* cons2(49,48) -> 39* top9(188) -> 15* mark2(43) -> 39* proper9(172) -> 192* proper9(174) -> 188* proper9(159) -> 198* proper9(173) -> 193* proper9(148) -> 201* 02() -> 44* cons9(208,215) -> 218* cons9(193,192) -> 188* cons9(217,172) -> 188* zeros2() -> 42* s9(224) -> 223* s9(201) -> 193* top3(51) -> 15* 07() -> 204* proper3(42) -> 52* proper3(44) -> 53* proper3(43) -> 51* zeros7() -> 206* ok2(42) -> 48* ok2(44) -> 49* ok9(218) -> 188* ok9(215) -> 192* ok3(61) -> 53* ok3(56) -> 39* ok3(58) -> 52* top10(220) -> 15* adx3(52) -> 51* adx3(42) -> 56* active10(218) -> 220* active10(208) -> 223* cons3(44,42) -> 56* cons3(61,58) -> 69* cons3(53,52) -> 51* cons10(223,215) -> 220* active3(56) -> 51* 03() -> 61* problem: Qed