Problem:
active(incr(nil())) -> mark(nil())
active(incr(cons(X,L))) -> mark(cons(s(X),incr(L)))
active(adx(nil())) -> mark(nil())
active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L))))
active(nats()) -> mark(adx(zeros()))
active(zeros()) -> mark(cons(0(),zeros()))
active(head(cons(X,L))) -> mark(X)
active(tail(cons(X,L))) -> mark(L)
active(incr(X)) -> incr(active(X))
active(cons(X1,X2)) -> cons(active(X1),X2)
active(s(X)) -> s(active(X))
active(adx(X)) -> adx(active(X))
active(head(X)) -> head(active(X))
active(tail(X)) -> tail(active(X))
incr(mark(X)) -> mark(incr(X))
cons(mark(X1),X2) -> mark(cons(X1,X2))
s(mark(X)) -> mark(s(X))
adx(mark(X)) -> mark(adx(X))
head(mark(X)) -> mark(head(X))
tail(mark(X)) -> mark(tail(X))
proper(incr(X)) -> incr(proper(X))
proper(nil()) -> ok(nil())
proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(nats()) -> ok(nats())
proper(zeros()) -> ok(zeros())
proper(0()) -> ok(0())
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
incr(ok(X)) -> ok(incr(X))
cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
s(ok(X)) -> ok(s(X))
adx(ok(X)) -> ok(adx(X))
head(ok(X)) -> ok(head(X))
tail(ok(X)) -> ok(tail(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
Proof:
Bounds Processor:
bound: 10
enrichment: match
automaton:
final states: {15,14,13,12,11,10,9,8,7}
transitions:
zeros3() -> 58*
ok4(67) -> 51*
ok4(79) -> 87*
ok4(78) -> 86*
adx4(69) -> 77*
adx4(64) -> 51*
adx4(58) -> 67*
cons4(87,86) -> 74*
cons4(79,78) -> 80*
cons4(61,58) -> 67*
cons4(63,42) -> 51*
active4(67) -> 70*
active4(42) -> 64*
active4(44) -> 63*
top4(70) -> 15*
mark3(69) -> 64*
mark4(80) -> 74*
mark4(77) -> 51*
adx5(80) -> 84*
adx5(74) -> 70*
active5(105) -> 91*
active5(61) -> 73*
active5(58) -> 74*
cons5(97,96) -> 92*
cons5(79,78) -> 98*
cons5(73,58) -> 70*
proper4(77) -> 70*
proper4(61) -> 87*
proper4(58) -> 86*
04() -> 79*
zeros4() -> 78*
proper5(84) -> 91*
proper5(79) -> 97*
proper5(69) -> 74*
proper5(78) -> 96*
mark5(84) -> 70*
active0(5) -> 7*
active0(2) -> 7*
active0(4) -> 7*
active0(6) -> 7*
active0(1) -> 7*
active0(3) -> 7*
top5(91) -> 15*
incr0(5) -> 8*
incr0(2) -> 8*
incr0(4) -> 8*
incr0(6) -> 8*
incr0(1) -> 8*
incr0(3) -> 8*
adx6(92) -> 91*
adx6(101) -> 151*
adx6(98) -> 105*
adx6(78) -> 108*
nil0() -> 1*
proper6(110) -> 118*
proper6(80) -> 92*
mark0(5) -> 2*
mark0(2) -> 2*
mark0(4) -> 2*
mark0(6) -> 2*
mark0(1) -> 2*
mark0(3) -> 2*
ok5(102) -> 133,97
ok5(101) -> 141,96
ok5(98) -> 74*
cons0(3,1) -> 9*
cons0(3,3) -> 9*
cons0(3,5) -> 9*
cons0(4,2) -> 9*
cons0(4,4) -> 9*
cons0(4,6) -> 9*
cons0(5,1) -> 9*
cons0(5,3) -> 9*
cons0(5,5) -> 9*
cons0(6,2) -> 9*
cons0(1,2) -> 9*
cons0(6,4) -> 9*
cons0(1,4) -> 9*
cons0(6,6) -> 9*
cons0(1,6) -> 9*
cons0(2,1) -> 9*
cons0(2,3) -> 9*
cons0(2,5) -> 9*
cons0(3,2) -> 9*
cons0(3,4) -> 9*
cons0(3,6) -> 9*
cons0(4,1) -> 9*
cons0(4,3) -> 9*
cons0(4,5) -> 9*
cons0(5,2) -> 9*
cons0(5,4) -> 9*
cons0(5,6) -> 9*
cons0(6,1) -> 9*
cons0(1,1) -> 9*
cons0(6,3) -> 9*
cons0(1,3) -> 9*
cons0(6,5) -> 9*
cons0(1,5) -> 9*
cons0(2,2) -> 9*
cons0(2,4) -> 9*
cons0(2,6) -> 9*
ok6(105) -> 70*
ok6(152) -> 194,147
ok6(151) -> 132*
ok6(106) -> 92*
ok6(148) -> 145*
ok6(155) -> 128*
s0(5) -> 10*
s0(2) -> 10*
s0(4) -> 10*
s0(6) -> 10*
s0(1) -> 10*
s0(3) -> 10*
05() -> 102*
adx0(5) -> 11*
adx0(2) -> 11*
adx0(4) -> 11*
adx0(6) -> 11*
adx0(1) -> 11*
adx0(3) -> 11*
zeros5() -> 101*
nats0() -> 3*
cons6(117,78) -> 92*
cons6(102,151) -> 155*
cons6(79,108) -> 109*
cons6(102,101) -> 106*
zeros0() -> 4*
ok7(197) -> 181*
ok7(204) -> 201*
ok7(159) -> 186,144
ok7(114) -> 91*
ok7(206) -> 203*
ok7(156) -> 118*
ok7(160) -> 138*
00() -> 5*
adx7(152) -> 159*
adx7(127) -> 118*
adx7(194) -> 186*
adx7(141) -> 132*
adx7(106) -> 114*
adx7(101) -> 120*
head0(5) -> 12*
head0(2) -> 12*
head0(4) -> 12*
head0(6) -> 12*
head0(1) -> 12*
head0(3) -> 12*
active6(114) -> 118*
active6(79) -> 117*
active6(98) -> 92*
tail0(5) -> 13*
tail0(2) -> 13*
tail0(4) -> 13*
tail0(6) -> 13*
tail0(1) -> 13*
tail0(3) -> 13*
mark6(110) -> 91*
proper0(5) -> 14*
proper0(2) -> 14*
proper0(4) -> 14*
proper0(6) -> 14*
proper0(1) -> 14*
proper0(3) -> 14*
incr6(109) -> 110*
ok0(5) -> 6*
ok0(2) -> 6*
ok0(4) -> 6*
ok0(6) -> 6*
ok0(1) -> 6*
ok0(3) -> 6*
top6(118) -> 15*
top0(5) -> 15*
top0(2) -> 15*
top0(4) -> 15*
top0(6) -> 15*
top0(1) -> 15*
top0(3) -> 15*
incr7(155) -> 156*
incr7(151) -> 162*
incr7(121) -> 122*
incr7(128) -> 118*
top1(37) -> 15*
proper7(122) -> 137*
proper7(109) -> 128*
proper7(79) -> 133*
proper7(101) -> 194*
proper7(108) -> 132*
proper7(78) -> 141*
active1(5) -> 37*
active1(2) -> 37*
active1(4) -> 37*
active1(6) -> 37*
active1(1) -> 37*
active1(3) -> 37*
active7(102) -> 131*
active7(156) -> 137*
active7(106) -> 127*
proper1(5) -> 37*
proper1(2) -> 37*
proper1(4) -> 37*
proper1(6) -> 37*
proper1(1) -> 37*
proper1(3) -> 37*
mark7(122) -> 118*
mark7(164) -> 137*
ok1(35) -> 37,14
ok1(25) -> 25,9
ok1(20) -> 37,14
ok1(27) -> 27,10
ok1(29) -> 29,11
ok1(31) -> 31,12
ok1(33) -> 33,13
ok1(23) -> 23,8
ok1(18) -> 37,14
cons7(131,101) -> 127*
cons7(133,132) -> 128*
cons7(163,162) -> 164*
cons7(102,120) -> 121*
cons7(131,151) -> 138*
cons7(148,159) -> 160*
tail1(5) -> 33*
tail1(2) -> 33*
tail1(4) -> 33*
tail1(6) -> 33*
tail1(1) -> 33*
tail1(3) -> 33*
top7(137) -> 15*
head1(5) -> 31*
head1(2) -> 31*
head1(4) -> 31*
head1(6) -> 31*
head1(1) -> 31*
head1(3) -> 31*
incr8(160) -> 168*
incr8(159) -> 172*
incr8(186) -> 180*
incr8(138) -> 137*
adx1(5) -> 29*
adx1(2) -> 29*
adx1(4) -> 29*
adx1(6) -> 29*
adx1(1) -> 29*
adx1(18) -> 19*
adx1(3) -> 29*
proper8(120) -> 144*
proper8(162) -> 180*
proper8(152) -> 203*
proper8(102) -> 145*
proper8(164) -> 170*
proper8(151) -> 186*
proper8(121) -> 138*
proper8(101) -> 147*
proper8(163) -> 181*
s1(5) -> 27*
s1(2) -> 27*
s1(4) -> 27*
s1(6) -> 27*
s1(1) -> 27*
s1(3) -> 27*
cons8(185,159) -> 179*
cons8(181,180) -> 170*
cons8(173,172) -> 174*
cons8(145,144) -> 138*
cons8(197,172) -> 211*
cons1(2,6) -> 25*
cons1(3,1) -> 25*
cons1(3,3) -> 25*
cons1(3,5) -> 25*
cons1(4,2) -> 25*
cons1(4,4) -> 25*
cons1(4,6) -> 25*
cons1(5,1) -> 25*
cons1(5,3) -> 25*
cons1(5,5) -> 25*
cons1(6,2) -> 25*
cons1(1,2) -> 25*
cons1(6,4) -> 25*
cons1(1,4) -> 25*
cons1(6,6) -> 25*
cons1(1,6) -> 25*
cons1(2,1) -> 25*
cons1(2,3) -> 25*
cons1(2,5) -> 25*
cons1(3,2) -> 25*
cons1(3,4) -> 25*
cons1(3,6) -> 25*
cons1(4,1) -> 25*
cons1(4,3) -> 25*
cons1(4,5) -> 25*
cons1(5,2) -> 25*
cons1(5,4) -> 25*
cons1(5,6) -> 25*
cons1(20,18) -> 19*
cons1(6,1) -> 25*
cons1(1,1) -> 25*
cons1(6,3) -> 25*
cons1(1,3) -> 25*
cons1(6,5) -> 25*
cons1(1,5) -> 25*
cons1(2,2) -> 25*
cons1(2,4) -> 25*
06() -> 148*
incr1(5) -> 23*
incr1(2) -> 23*
incr1(4) -> 23*
incr1(6) -> 23*
incr1(1) -> 23*
incr1(3) -> 23*
adx8(147) -> 144*
adx8(206) -> 212*
adx8(203) -> 198*
01() -> 20*
zeros6() -> 152*
zeros1() -> 18*
ok8(212) -> 198*
ok8(172) -> 180*
ok8(211) -> 170*
ok8(208) -> 193*
ok8(168) -> 137*
nats1() -> 35*
active8(155) -> 138*
active8(168) -> 170*
active8(148) -> 185*
nil1() -> 35*
s7(102) -> 163*
s7(148) -> 197*
mark1(25) -> 25,9
mark1(27) -> 27,10
mark1(29) -> 29,11
mark1(19) -> 37,7
mark1(31) -> 31,12
mark1(33) -> 33,13
mark1(23) -> 23,8
top8(170) -> 15*
top2(39) -> 15*
incr9(212) -> 215*
incr9(179) -> 170*
incr9(198) -> 192*
active2(35) -> 39*
active2(20) -> 39*
active2(18) -> 39*
active9(160) -> 179*
active9(197) -> 217*
active9(204) -> 224*
active9(211) -> 188*
proper2(20) -> 49*
proper2(19) -> 39*
proper2(18) -> 48*
mark8(174) -> 170*
adx2(42) -> 43*
adx2(48) -> 39*
s8(145) -> 181*
s8(204) -> 208*
s8(148) -> 173*
s8(185) -> 217*
cons2(44,42) -> 43*
cons2(49,48) -> 39*
top9(188) -> 15*
mark2(43) -> 39*
proper9(172) -> 192*
proper9(174) -> 188*
proper9(159) -> 198*
proper9(173) -> 193*
proper9(148) -> 201*
02() -> 44*
cons9(208,215) -> 218*
cons9(193,192) -> 188*
cons9(217,172) -> 188*
zeros2() -> 42*
s9(224) -> 223*
s9(201) -> 193*
top3(51) -> 15*
07() -> 204*
proper3(42) -> 52*
proper3(44) -> 53*
proper3(43) -> 51*
zeros7() -> 206*
ok2(42) -> 48*
ok2(44) -> 49*
ok9(218) -> 188*
ok9(215) -> 192*
ok3(61) -> 53*
ok3(56) -> 39*
ok3(58) -> 52*
top10(220) -> 15*
adx3(52) -> 51*
adx3(42) -> 56*
active10(218) -> 220*
active10(208) -> 223*
cons3(44,42) -> 56*
cons3(61,58) -> 69*
cons3(53,52) -> 51*
cons10(223,215) -> 220*
active3(56) -> 51*
03() -> 61*
problem:
Qed